Funding Dystonia Discoveries
Since 1976
Shining a light on dystonia,
and a path forward for every family.
previous arrow
next arrow
Slider
Support Groups

There are many benefits to joining a dystonia support group. Find the support group nearest you and enjoy the rewards.

Get Involved

You can connect with others in the dystonia community who are committed to making a difference. Getting involved is empowering.

Donate

The Dystonia Medical Research Foundation (DMRF) has stood up for the dystonia community since 1976. Join us in our global effort to find a cure.

Dystonia News

Latest Developments
Dystonia Advocacy Day on Capitol Hill

Join Us Virtually for Dystonia Advocacy Day

You can educate Members of Congress about dystonia and how it changes lives. Join us for the Dystonia Advocacy Network’s virtual advocacy day on March 3, 2021. Register today. Join dedicated volunteers from across the country to advocate for the dystonia community on important issues like funding for research, creating research funding opportunities through the […]

FAQ 920w

Dystonia: Frequently Asked Questions

This article was originally published in the Dystonia Dialogue. What is dystonia? Dystonia is a brain disorder resulting in involuntary, abnormal postures or movements of the body due to excessive muscle contractions. Dystonia may be the only neurological disorder a person has, or the dystonia may be part of a medical condition or disease with […]

legacy society collage reduced

Legacy Society Honors Visionary Donors

This article was originally published in the Dystonia Dialogue. The DMRF was only a few years old in the late 1970s when Susan Aguilera’s seven-year-old daughter Emma was diagnosed with dystonia by a special panel of neurologists in San Diego. Finally there was an explanation for why her little girl had lost the ability to […]

Join us, and be a part of the global effort to find a cure for dystonia

Select list(s) to subscribe to

Current Dystonia Research Investigations

The Dystonia Medical Research Foundation (DMRF) prides itself on a long history of supporting and stimulating dystonia research.

Genetic Modifiers of Penetrance in DYT1 Dystonia

Some types of dystonia are hereditary, for example, DYT1 dystonia caused by mutation in the TOR1A gene. It is not clear, however, why individuals with the same genetic mutation can develop different severities of symptoms. On the extremes, one individual may experience severe dystonia that starts in childhood and leads to significant motor disability while another individual may be totally asymptomatic and not even aware of having the genetic mutation. The researchers believe that other genes, yet to be discovered, determine wither an individual carrying a potentially dystonia-causing genetic mutation will develop this movement disorder or not. They propose to find this gene(s) by comparing the genomes of individuals who have mutation in the TOR1A gene, with or without apparent dystonia symptoms. The goal is to find genes that protect some individuals from developing dystonia, even in the presence of the mutated gene.

David Arkadir, MD, PhD Hadassah Medical Center & Hebrew University of Jerusalem

The Role of Cholinergic Neurons in Isolated Focal Cervical Dystonia

Cervical dystonia produces excessive involuntary muscle contractions in the neck. These muscle contractions result in uncomfortable, awkward, and sometimes painful positions of the head, neck, and shoulders. This research project focuses on improving understanding of the brain’s role in cervical dystonia, specifically directed toward improved treatment. The investigators will use state-of-the-art brain imaging techniques, positron emission tomography (PET) and magnetic resonance imaging (MRI), to observe the working brain. PET allows researchers to observe chemical messengers (neurotransmitters) in the brain, in this case acetylcholine. MRI allows researchers us to observe how one region of the brain communicates with other brain regions. Combining PET and MRI techniques provides a powerful opportunity to determine how altered chemical messenger levels may influence the way brain regions communicate in cervical dystonia by comparing brain activity of patients with cervical dystonia and control volunteers without cervical dystonia. Acetylcholine is a neurotransmitter of interest because some dystonia patients improve when taking medications that alter levels of acetylcholine. The researchers suspect that brain regions that use acetylcholine are damaged in patients with cervical dystonia and therefore the communication between brain regions that rely on acetylcholine is disrupted. If they find that acetylcholine affects how brain regions communicate in cervical dystonia, future research can attempt to correct the communication problem with new medication or brain stimulation therapies.

Scott Norris, MD Washington University School of Medicine

Cholinergic Interneuron Dysfunction in a Phenotypic Mouse Model of Dystonia

Dystonia is challenging to adequately treat, particularly because the underlying brain circuitry problem is not well understood. Studies indicate that a specific population of brain cells, namely striatal cholinergic interneurons, is dysfunctional in both dystonia animal models and in dystonia patients. Accordingly, dystonia is most effectively treated with drugs that reduce striatal cholinergic interneuron function, suggesting that enhanced cholinergic function may play a key role in dystonia. Utilizing a genetic animal model of dystonia that exhibits dystonia triggered by caffeine (transgenic paroxysmal nonkinesigenic dyskinesia (PNKD) mutant mice), the researchers have obtained preliminary data showing striatal cholinergic interneuron dysfunction similar to that observed in non-manifesting dystonia models. In this proposal, they will attempt to correlate dysfunction of striatal cholinergic interneurons with dystonic symptoms in dystonia-manifesting PNKD mice. They expect the experiments to answer crucial questions necessary for linking disease causing mutations to abnormal movements.

Mariangela Scarduzio, PhD University of Alabama at Birmingham
en_USEnglish